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Loss Computation in Superconductors

Francesco Grilli, Frédéric Sirois, Senior Member, IEEE, Marc Laforest, and Stephen P. Ashworth

Abstract—In this paper we present a new model for computing
the current density and field distributions in superconductors by
means of a finite element (FE) periodic space-time (PST) formula-
tion. By considering the time as a space dimension, and considering
periodic excitations for the applied field or transport current, we
can use a static model to solve this time dependent problem. This
approach has the potential to overcome one of the major problems
of FE modeling of superconductors: the length of simulations, even
for relatively simple cases. In this paper we show our first results
for different cases of superconductors with AC magnetic fields and
currents. Results are compared with those of standard time-depen-
dent methods and analytical solutions.

Index Terms—AC losses, finite-element method, numerical
methods, space-time.

1. INTRODUCTION

INITE-ELEMENT calculations have proved to be capable
F of accurately predicting the AC losses in high-tempera-
ture superconductor (HTS) devices of increasing complexity.
Different formulations (using different state variables) are pos-
sible, but in general the FE models solve Faraday’s law (which
contains partial derivatives with respect to position and time),
using a non-linear resistivity for the superconductor material:
V x E = —0B/0t, where E = pJ. The resistivity p is de-
scribed by a non-linear function of the current density: p(J) =
E./J.|\J/JeIn — 1.

The presence of a non-linear resistivity does not allow for a
steady-state time harmonic solution, so the standard approach is
to solve it as a time-dependent problem. This means that several
time-steps have to be solved: typically two cycles are solved to
eliminate the effects of the transient from the initial condition
(generally a material in its virgin state). This approach results in
a lengthy solving process. Even simple problems like a rectan-
gular wire carrying transport current and/or subjected to an ex-
ternal field require several minutes of computation on fast work-
stations. The simulation of real wires and devices would involve
a large increase in the number of mesh nodes, due either to the
geometry of the wire itself (the very thin YBCO coated conduc-
tors are the most promising wires) or to the high number of tapes
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in complex devices (cables, coils). For the design of practical
devices, numerous configurations and parameters typically have
to be tested, so the standard approach based on a solution of the
transient problem, while providing accurate results, is not op-
timal, due to the unreasonable size of the computational times.
Therefore the search for an alternative, faster and equally reli-
able way of computing current and field profiles as well as AC
losses in superconducting devices is mandatory.

In this framework, we started developing, implementing and
testing a new model based on a periodic space-time (PST) for-
mulation, where one of the dimensions of the simulated domain
represents the time [1], [2]. This allows one to solve the problem
as a static one, which can be better handled by the solvers and
is likely to be faster.

In this paper we present the first results of this project,
showing that the problem is well posed and that there is a
potential for obtaining a faster simulation tool. The model has
been implemented in the commercial finite-element software
package COMSOL Multiphysics [3].

II. MODEL DESCRIPTION AND RESULTS

For our initial analysis we considered two problems, an infi-
nite slab subjected to a parallel external AC field and a round
wire carrying a transport current. The first is an example of a
1-D transient problem that is transformed into a 2-D static one.
The second is a 2-D transient problem (the circular cross-section
wire), transformed into a 3-D static one (a cylinder, whose axis
defines the time). The common point is that the boundary con-
ditions for the magnetic field are known in both cases, so they
serve as an initial test of the correctness of the implementation
of the model. In fact, one of the most important contributions of
this paper is the extension of the concept of the PST formulation
to the case of multiple conductors of rectangular shape carrying
an arbitrary current. In that case, the boundary conditions for
the magnetic field are unknown, and the currents have to be im-
posed by means of integral constraints.

A. HTS Slab in AC Magnetic Field

The problem of an infinite slab subjected to an external AC
magnetic field is one-dimensional and Faraday’s equation re-
duces to the scalar diffusion equation:
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where the quantity p/uo = f(J, B) = f(0B/0z, B) is known
as the diffusion coefficient (highly nonlinear in this case).
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Periodic condition:
B(x,0)=B(x,T)

Applied field:
B, sin(wy)
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Fig. 1. Schematic view of the geometry and boundary conditions used for the
PST model of an infinite slab subjected to a parallel AC field.

Fig. 1 schematically shows the geometry used for the PST
model. The width of the slab (2a) is represented on the x axis,
whereas the time corresponds to the y axis. As for the boundary
conditions, we know that the field is equal to the applied one at
the slab’s edges at each time instant, so we applied the Dirichlet
condition B = B.,tsin(wy) on the vertical sides of the do-
main. Since one cycle of the field oscillation is simulated, the
solution at ¥y = 0 must be the same at y = T, where T is
the period of the cycle. This is done by imposing a periodicity
condition on the two horizontal sides of the domain: B(z,y =
0) = B(xz,y = T). The problem size can be further reduced
by considering only a half-period and imposing a condition of
anti-symmetry: B(z,y = 0) = —B(z,y = T/2). This al-
lows simulating a smaller domain, using less mesh nodes and,
consequently, reduce by half the computing time. It has to be re-
marked that in general the = and y scales might differ by several
orders of magnitude, depending on the considered dimensions
of the slab and frequency of the applied field. Since the aspect
ratio of the mesh elements must be close to one to avoid badly
conditioned matrices in the numerical problem, it is important
that both z and y be on the same scale. Failure to do so will
result in a very elongated rectangle with badly shaped mesh el-
ements; if one wants to use a similar mesh density on both sides
the number of mesh nodes is very large. In order to avoid these
problems, we scaled the time by a factor ¢, so that the simulated
domain is square and the mesh elements are regular.

Fig. 2 shows the computed magnetic flux density (a) and cur-
rent density (b) distributions in a superconducting slab for an
applied field of 40 mT at 500 Hz. The slab width is 1 mm, the
superconductor’s parameter are J. = 10% A/ m?, n = 25.In
Fig. 2(b) the current-free region can be noticed in the center,
whereas on the sides the current density changes sign as a func-
tion of the time (vertical direction).

We have compared the results of the current/field profiles and
AC losses obtained with the PST model with those obtained with
a standard transient model [4] and with analytical models [5].
As an example we show the AC losses. Generally the AC losses
are computed by integrating the instantaneous power dissipation
pJ? on the conductor’s cross section and then over a cycle. In
order to obtain the value in watt per cubic meter, the integral has
to be multiplied by the frequency and by the conductor’s cross
section (the slab width in this case). With the PST model this
is done by integrating the quantity 2fp.J%/(2ac) on the simu-
lated domain: the factor 2 takes into account that we simulate
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Fig. 2. Magnetic flux density (a) and current density (b) distribution in a super-
conducting slab for an applied field of 40 mT at 500 Hz. The vertical direction
represents the time (in seconds).

half a cycle, whereas the factor ¢ takes into account the fact that
on the y axis the “real” time has been scaled (y = ct). The
results are summarized in Fig. 3, where the losses are also com-
pared with those computed by analytical expression [5]. Com-
puting times refer to a workstation equipped with a 2.4 GHz pro-
cessor and 3 GB of RAM. It can be noticed that the agreement
on the loss value between the different models is very good. As
for the computing times, a remark is necessary. Time-depen-
dent models compute the solution of the problems on several
cycles (typically two, to avoid transient effects), starting with
an initial condition where all the variables are set to zero. This
means that when a parameter (e.g. the amplitude of the applied
field) is changed, the solution has to be computed from zero ini-
tial conditions every time. This is not optimal in view of using
the model for design and optimization purposes, where typically
many configurations and working conditions have to be tested.
On the other hand, the PST formulation allows computing a so-
lution starting from a previous one (as it uses a static solver),
where a parameter is only slightly different. Since the simulation
starts from a value quite close to the solution one is looking for,
the computing time is lower. For the PST formulation, Fig. 3 re-
ports the computing times for the simulations performed starting
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Fig. 3. Comparison of AC losses (in W /m?®) and computing times obtained
with different models for a superconducting slab subjected to an external AC
magnetic field.

from zero and from a previous solution (i.e. a previous value
of the field). It can be seen that in the first case the computing
time increases with the field value, whereas in the second case
it is quite constant. This is a relatively simple problem, so the
gain in computing time might not seem important. However, it
is expected to be more relevant in practice where more complex
problems will need to be considered.

B. Round Conductor Carrying AC Current

In order to test the PST approach on a higher dimensional
problem (2-D geometry + time), we implemented the model for
the case of a round conductor carrying AC current. Even if there
is one more dimension to handle, this problem is conceptually
similar to the case of the slab, because we know the boundary
conditions for the state variable. For a given transport current of
amplitude I,,, the magnetic field on the conductor’s boundary is
tangential and has amplitude Hy = I,,/(27r), where r is the ra-
dius of the round conductor. An example of the current density
distribution at different five instants of the half-period is given
in Fig. 4. The conductor has a radius of 1 mm, J. = 108 A/mg,
n = 25, and carries a (peak) transport current of 200 A. The crit-
ical current is 314 A. Once again, we obtained good agreement
for the AC loss computation with all methods (except at current
close to I., where Norris’s formula diverges). The reduction of
computing time starting from the previously computed solution
is even more evident than for the slab case-see Fig. 5.

C. Multiple Conductors of Arbitrary Shape

The tests described above assumed the knowledge of the mag-
netic field amplitude at the conductor’s edges. In the presence
of multiple conductors this is not the case. Even the simple case
of only one conductor with rectangular cross-section cannot be
simulated with the above implementation, because the magnetic
field at the edges is unknown (demagnetizing factor). The basic
idea for generalizing the model is to simulate the conductor(s)
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Fig. 4. Current density distribution in a round conductor at five different in-
stants of the half-period obtained with the PST.
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Fig. 5. Comparison of AC losses (in W/m) and computing times obtained with
different models for a round conductor carrying AC current. Analytical data are
computed by Norris’s formula for an elliptical wire [6].

and the insulating domain around them and to impose the de-
sired transport current by means of time-dependent constraints,
and leaving the field at the external boundary free to vary by im-
posing a Neumann boundary condition. These constraints are to
be applied to the individual conductors, so that we can simu-
late the most general case of multiple conductors carrying an
arbitrary current. This will be useful to simulate for example
the cross-section of a multiple-turn pancake coil, where each
conductor (i.e. each turn of tape) carries the same current and
experiences the magnetic field generated by the neighbors or
multi-layer cables, where the tapes of each layer carry in gen-
eral different currents.

As a first and relatively simple approach to this problem, we
chose to use a finite difference technique to deal with the time
derivative term, which leads to the discretization of the time
transient problem into a finite number of “slices” or “layers”
along the time axis.
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We start from the general diffusion equation:

P 0B
Vx —VxB=——, 2
X o X T 2)
with the Neumann boundary conditions
0B
L22 <o, 3)
po On

where n is the unit vector normal to the external face of the
domain. We then approximate the variation rate of the magnetic
flux with a classical second order finite difference formula, i.e.

9B _ B(t+At) — B(t — At)
ot~ 2AL

: “4)

For each layer j we have a solution B; = B(z, y, ¢;), corre-
sponding to an equation of the form:

B..i1—B._
vxﬂvXBj:M.

o 20t ®)

Using anti-symmetric boundary conditions with n, points
per half-cycle, this allows setting-up a problem involving n;
“layers” coupled together by the B4 terms appearing on the
right hand-side, i.e.

V x 2V x By = (By — By)/(2At)
2]

V x 2V x B, = (Bs — By)/(2At)
2]

?

?

V x uiv x By, =(By,+1 — Bo,_1)/(2A1).  (6)
0

with Bg = —B,,, and B,,,,, = —B; because of antisymetry.

In COMSOL, this approach can be implemented by using ex-
trusion coupling variables to make the variables B, B;_;
available in the jth “layer” (or “geometry” in COMSOL’s ter-
minology) and by inserting the finite difference expressions as
source terms in a COMSOL’s magnetostatic application mode.
This means that instead of having a full 3-D geometry, we have
a set of n; 2-D coupled problems to solve.

As an example, we considered three stacked straight conduc-
tors (side dimension 1 mm, distance center-to-center 2 mm) car-
rying sinusoidal currents of different amplitudes: 80, 70, and 60
A. We compared the results obtained with this finite difference
implementation of the PST model with those obtained by a stan-
dard transient 2-D method, and found good agreement. As an
example, Fig. 6 shows the instantaneous losses in the three con-
ductors during a half-cycle. The frequency of the sources is 100
Hz, the critical current of each conductor is 100 A. The time do-
main has been “sliced” in 16 time steps, whereas for sake of ac-
curacy in the transient model we have used 100 steps per cycle.

This therefore shows that the PST method is applicable in the
general case, but the finite difference approach is not enough
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Fig. 6. Instantaneous AC losses for three stacked superconductors carrying cur-
rent of 80, 70, and 60 A computed with the PST formulation (symbols) and the
standard transient model (lines).

flexible to provide the expected benefits in terms of reduction of
computation times (see comments below about further work).

III. DI1SCUSSION AND CONCLUSION

In this paper we presented the idea of using a periodic space-
time (PST) formulation to compute electromagnetic quantities
in HTS for power applications. The preliminary results shown
here were intended to demonstrate the correctness of this new
approach. Further work is needed to optimize the most general
case of multiple conductors carrying arbitrary currents, which is
also the most interesting for practical applications such as cables
and coils. The ideal solution would be to consider a full 3-D
geometry and mesh and impose the current constraints in each
conductor by means of weak form constraints. This would allow
beneficiating from powerful mesh adoption tools developed for
static solvers, which are expected to lead to significant reduction
of computation times.
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