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Abstract6

This paper presents a methodology for optimizing the shape of unstructured lattices pro-7

duced by additive manufacturing technologies. The lattices are modeled as a collection of8

one-dimensional beams under external loadings. The formulations of the shape optimization9

problems, which aim at minimizing the strain energy of the lattices when subjected to geo-10

metrical constraints, are described in detail. The work mainly focuses on the theoretical and11

numerical analysis of these formulations. The performance of the proposed method is also12

assessed on several test cases.13
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1 Introduction16

Fabrication of lattice structures by rapidly evolving additive manufacturing technologies now al-17

lows one to contemplate innovative designs for mechanical parts such as lattice structures whose18

main advantage are to presserve the mechanical properties of solid parts while being lightweight.19

Lattices structures are actually drawing the attention of several industrial sectors, in particular in20

aeronautics and biomechanics. For example, medical prostheses composed of lattices present en-21

hanced biocompatibility and can be personalized to the patients needs [13, 24]. Lattice structures22

embedded in planes or cars can help reduce their overall mass and lead to significant reduction in23

fuel consumption [11].24

In order to fully take advantage of the extensive freedom of design offered by additive man-25

ufacturing technologies, several optimization techniques have been developed over the past years.26

One of the well-known methods in topology optimization is the Solid Isotropic Material Penaliza-27

tion (SIMP) [2, 3, 20], which consists in subdivising a geometry into cells and fills with material28

those which are relevant to a particular functionnal objective. Due to the high geometrical com-29

plexity of the parts designed with the SIMP method, several works have attempted to directly30

bridge the method with additive manufacturing technologies. Some have considered, for example,31
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to fill intermediate density regions with predefined lattice cells [4, 18]. The process relies however32

on heuristics regarding the choice and the size of the cells.33

Another topology optimization technique is the Ground Structure Method (GSM), also34

known as Layout Optimization [1, 9, 21, 25]. This method consists in optimizing the cross-35

section area of trusses connecting a dense set of points inside a domain. Extensions of the method36

have been developed to seek the optimal position of the nodes and to consider the buckling phe-37

nomenon in the optimization problem [7, 26]. To the best of the authors’ knowledge, this topology38

optimization method only considers the trusses as bars, hence only taking into account the axial39

forces and deformations.40

The authors in [5] followed the idea of finding the optimal position of the nodes inside a given41

lattice. They considered a set of trusses linked by nodes inside a geometry and sought the position42

of these nodes and the size of the trusses such that the compliance is minimized. They conducted43

experiments on printed parts and observed that the optimized structures possessed enhanced me-44

chanical properties compared to non-optimized parts.45

The objectives of the paper are to present and describe a methodology to optimize the shape46

of unstructured lattices. The proposed method resembles the approach taken in [5]. A simple47

geometrical and mechanical description of an unstructured lattice leads to consistent definitions of48

objective and constraint functions unlike the SIMP or GSM formulations. These definitions49

are then used to formulate two shape optimization problems. The principal contribution addressed50

in this work is the analysis of the shape optimization problems, in particular whether or not there51

exist solutions to the shape optimization problems depending of the type of constraints. We evaluate52

analytically and numerically the impact of the added constraints for various problems. Finally, we53

address the question as to whether the creation of unstructured lattices is advantageous compared54

to their structured counterpart.55

The paper is organized as follows. We present in Section 2 the geometrical description of a lattice56

structure and introduce the hypotheses employed in order to model the structure. In Section 3,57

we present the mechanical model of a lattice. In Section 4, we first formulate the different shape58

optimization problems to be studied. We then propose strategies designed to efficiently solve59

the various shape optimization problems. We briefly present the interior-point method to solve60

finite-dimensional optimization problem with equality and inequality constraints. The reduced and61

adjoint problems are also described in order to efficiently compute the gradient of the objective62

function. In Section 5, we apply the different shape optimization problems on several numerical63

examples. We first discuss the well-posedness of these problems using some simple examples. We64

then solve the shape optimization problem on denser lattices with more complex loadings. We65

finally conclude and discuss the performance of the proposed methodology in Section 6.66
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2 Geometrical Model67

In this section, we first present the geometrical characteristics of the lattice and lay out some68

hypotheses underlying a lattice model. Let Ω denote a polyhedral open subset of Rd, d ∈ {2, 3},69

representing the region occupied by a solid that should be replaced by a lattice structure. We70

assume that the boundary of Ω, denoted by ∂Ω, is formed of NΓ (d − 1)-simplices noted Γk,71

k = 1, . . . , NΓ . For the sake of clarity, we will no distinguish a simplex from the subset generated72

by the convex combination of the element of the simplex. Following [6, Chapter 2], we define a73

triangulation/mesh Th of the closure of Ω by partitioning the closure of Ω into a set K of Nk74

d-simplices. These d-simplices will be referred to as elements (an usual designation in the finite75

element literature). Consistency of the mesh Th requires that the intersection of two distinct76

elements Ke,Kf ∈ K that possess a non-trivial intersection Ke ∩Kf 6= ∅ must forms a k-simplex77

with k ≤ d − 1. We recall that a d-simplex is a point for d = 0, a segment for d = 1, a triangle78

for d = 2, and a tetrahedron for d = 3. The triangulation/mesh Th provides also a connectivityM79

that specifies the connection between all simplices of T .80

Definition 1 (Lattice) Every 0-simplex of the mesh Th serves as support for a point of null81

measure. The set of the NP points is denoted by P . Every 1-simplex (edge) of the mesh Th serve as82

support for a three dimensional cylindrical truss whose axis coincide with its associated 1-simplices.83

The set of NT cylindrical trusses is noted T . A lattice L is the union of the set P of all the point84

and the set T of all trusses. By neglecting the overlaps of the trusses at the vicinity of a point85

(Figure 3), the volume vol of the lattice L is the sum of the volume of the trusses.86

This definition of a lattice L allows the inheritance of the notion of elements Ke and connec-87

tivity M. For the sake of clarity, we will now refer to K as the set of elements Ke that are88

circumvented by the axis of the trusses Tm and to M as the connectivity of the points xi ∈ P .89

We can breakdown the set P of all points into more specific sets. We denote by PI the set of90

points that belong to Ω (PI = {xi ∈ P |xi ∈ Ω}). We note by PΓi the set of points that belong to91

the boundary Γi (PΓi = {xi ∈ P |xi ∈ Γi}). The procedure of creation of a lattice is presented in92

Figure 1 on an L-shaped domain Ω.93

The final objective is to manufacture any lattice satisfying the engineering objectives, but the94

manufacturing process already brings with it two simple constraints.95

Manufacturing Constraints 1 Each element Ke should be large enough that its trusses can be96

manufactured as a separate piece.97

Manufacturing Constraints 2 Trusses should be either parallel to the printing plane, or angled98

above Θp with respect to that plane.99
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Figure 1: (Left) Illustration of a polygonal domain Ω ∈ R2 of a solid to be replaced by a lattice.
(Center) Mesh Th of domain Ω. (Right) Illustration of lattice L extracted from Th.

The constraint 2 will be briefly discussed in Section 4, but we remark that this constraints has100

variables importance depending of the additive manufacturing technique. The constraint 1 requires101

that the trusses be of a minimum length and that the angles between trusses also remain above102

a minimum angle, both determined by the manufacturing process. This constraint is therefore103

equivalent to a constraint on the uniformity of the elements Ke of the mesh Th.104

The choice of a triangular/tetrahedral mesh instead of an arbitrary polygonal/polyhedral mesh is105

justified by the widely and extensive literature dealing with triangular/tetrahedral mesh generation,106

adaptation, and quality. One can have considered quadrangle mesh, but we suppose that a nearly107

equilateral triangular elements distribute more uniformly forces under multiples loadings. We now108

introduce a particular mesh quality measure for guiding the shape optimization process, in order109

to produce meshes that favor equilateral triangles. The reader is referred to [17] for a thorough110

presentation and comparison of several quality measures.111

The quality measure employed in this work is related to the condition number of the mapping112

from a reference element to an actual element [8, 12]. For the sake of clarity, we present the quality113

measure for triangular elements. The same procedure can be applied to tetrahedral elements.114

Let Ke be an arbitrary element of lattice L. The affine mapping is denoted by MKe and maps an115

equilateral reference element K̂ to the real element Ke (see Figure 2).116

Let {x1, x2, x3} (with xi = (xx,i, xy,i) ∈ R2) be the vertices of element Ke. The affine mapping117

from K̂ to Ke is given by118

x = MKe(ξ) =

[
xx,2 − xx,1 1√

3
(xx,3 − xx,1 + xx,3 − xx,2)

xy,2 − xy,1 1√
3

(xy,3 − xy,1 + xy,3 − xy,2)

]
︸ ︷︷ ︸

GKe

ξ +

[
xx,1
xy,1

]
. (2.1)

The condition number of matrix GKe with respect to the Frobenius norm ‖A‖F :=
√∑

i

∑
j A

2
ij is119
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Figure 2: Affine mapping MKe from the equilateral reference element K̂ to an element Ke.

given by120

κ(Ke) = ‖GKe‖F ‖G−1Ke‖F . (2.2)

Note that GK is actually the Jacobian matrix of MK . The choice of the Frobenius norm is motivated121

by the fact that it is differentiable with respect to the position of the nodes xi while other norms122

like ‖·‖1 or ‖·‖∞ are not. One could have instead chosen the induced norm ‖·‖2 but it was shown123

in [17] that the corresponding condition numbers are essentially the same as those computed from124

the Frobenius norm. One can show that for each element Ke ∈ K, κ(Ke) ≥ 2, ∀K, hence the125

normalized quality measure we propose is126

cκ(Ke) :=
2

κ(Ke)
. (2.3)

This quality measure indicates whether element Ke is an equilateral triangle (cκ(Ke) = 1) or close127

to a degenerated triangle (cκ(Ke) → 0) [17]. It is important to note that the quality measure is128

invariant under translation, rotation, and scaling of the elements.129

3 Mechanical Model130

The objective of this section is to derive a mathematical model of a lattice subjected to external131

traction forces. The model should be simple enough so that the optimization problem be tractable,132

yet accurate enough to describe the correct mechanical behavior of the lattice. We shall suppose133

here that the lattice is made of a linear elastic isotropic material and thus neglect the material134

orthotropicity due to the manufacturing process. The mechanical properties are then fully described135

by the Young modulus E and Poisson ratio ν of the material. We will assume that homogeneous136

Dirichlet boundary conditions are prescribed on part of the lattice boundary, denoted by ∂Lu, and137

that tractions t = (tx, ty, tz) are applied to the remainder of the lattice boundary, denoted by ∂Lt.138

The total energy in the lattice, as a function of the displacement field u = (ux, uy, uz), is then given139

by:140

J (u) = E(u)−W(u), (3.1)
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where E(u) and W(u) are the strain energy and external energy, respectively,

E(u) =
1

2

ˆ
L

Cijklεkl(u)εij(u) d, x (3.2)

W(u) =

ˆ
∂Lt

tiui ds. (3.3)

Here, C = C(E, ν) is the fourth-order stiffness tensor defined in terms of E and ν and εij(u) denotes141

the second-order strain tensor:142

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.4)

The second-order stress tensor is denoted by:143

σij = Cijklεlk. (3.5)

Note that the Einstein convention on repeated indices is used throughout the paper.144

Let V =
{
u ∈ [H1(L)]3 |u = 0 on ∂Lu

}
denote the spaces of admissible solutions and test145

functions. The displacement field u ∈ V in the lattice at equilibrium is thus given by146

u = argmin
v∈V

J (v). (3.6)

Above minimization problem is obviously equivalent to the variational problem:147

Find u ∈ V such that:

ˆ
L

Cijklεkl(u)εij(v) dx =

ˆ
∂Lt

tivi ds, ∀v ∈ V. (3.7)

The three-dimensional variational problem is clearly computationally intractable if the lattice is148

made of a very large number of trusses. Our objective is thus to construct a reduced model in order149

to decrease the number of degrees of freedom in the system. The approach that we shall follow is150

to model each truss of the lattice using unidimensional bar or Euler-Bernoulli models. With the151

definition of a lattice (Definition 1), the problem (3.7) can be reformulated as follows:152

Find u ∈ V such that:

NT∑
m=1

[ˆ
Tm

Cijklεkl(u)εij(v) dx−
ˆ
Tm∩∂Lt

tivi ds

]
= 0, ∀v ∈ V.

(3.8)

The objective is to consider local problems on each truss and to recover Problem (3.8) by153

enforcing the continuity of the displacement field and ensuring the balance of the forces and moments154

at the nodes of the lattice. We describe the unidimensional problem on a reference truss in the155

next section and later derive the global reduced model.156

3.1 1D model of truss in a reference system157

The following presentation is partially inspired by [16]. We consider here a reference truss T̂ of158

length ` and constant cross-sectional area A in the local coordinate system (O, ξ, η, ζ), see Figure 4.159
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Figure 3: (Left) Junction of trusses T1, T2, and T3 for a manufactured lattice. (Right) Overlaps of
trusses T1, T2, and T3 for the lattice L.

We denote by x̂0 and x̂1 the nodes at the extremities of the truss with coordinates (0, 0, 0) and160

(`, 0, 0), respectively.161

The Euler-Bernoulli model states that the displacement field of a truss aligned in the ξ-direction162

is given by:163

u(ξ) =

f(ξ)− η dg
dξ

(ξ)

g(ξ)
0

 (3.9)

where f and g are functions of the independent variable ξ only. Again, for the sake of clarity,164

we present the Euler-Bernoulli model for displacements and deformations in the ξη-plane, but the165

description can easily be extended to a 3D framework. The function f describes the displacement166

due to compression and tension forces. The quantity θ = dg/dξ defines the angle of rotation of167

the cross-sections with respect to the ζ-axis, due to normal forces and moments. We note that168

the Euler-Bernoulli model assumes that the cross-sections of the truss remain perpendicular to the169

neutral axis of the truss, as illustrated in Figure 4.170

In the Euler-Bernoulli model, the torsion effects are neglected. We also note that we recover171

the so-called bar model by taking g(ξ) = 0, in which case θ(ξ) = 0, ∀ξ ∈ [0, `]. We believe that the172

Euler-Bernoulli model, which takes into account axial as well as bending stresses, should provide173

an accurate description of the mechanical behavior of the trusses in a lattice. If the model is in fact174

invalidated, one could consider more complex models, such as the Timoshenko model, non-linear175

models, or even a full finite element model of the truss. Validation of the Euler-Bernoulli for lattices176

will be the subject of a future study.177
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Using (3.9), the strain εT̂ in truss T̂ is given by:178

εT̂ (u) =


df

dξ
− η d

2g

dξ2
0 0

0 0 0
0 0 0

 (3.10)

Ignoring the Poisson effects in the beam (setting ν = 0), the stress tensor σT̂ in truss T̂ is calculated179

as:180

σT̂ (u) =

E
df

dξ
− Eηd

2g

dξ2
0 0

0 0 0
0 0 0

 (3.11)

where E is the Young’s modulus of the truss. It is important to note that since we consider the

material to be isotropic, the definition of the stiffness tensor C is the same for the reference truss T̂

than that for an arbitrary truss Tm. It follows that the strain energy ET̂ reads:

ET̂ (u) =
1

2

ˆ
T̂

Cijklεkl(u)εij(u) dξdηdζ =
1

2

ˆ
T̂

σ11(u)ε11(u) dξdηdζ (3.12)

which can be rewritten with respect to the functions (f, g) as:181

ET̂ (f, g) =
1

2

ˆ `

0

[
EA

(
df

dξ

)2

+ EIζ

(
d2g

dξ2

)2
]
dξ. (3.13)

where Iζ is the moment of inertia with respect to the ζ-axis. The idea is now to calculate the

forces and moments at the boundaries of truss T̂ , when the endpoints are subjected to prescribed

displacements and angles of rotation. In order to set the minimization problems, we first introduce
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the following spaces of functions:

X = {f ∈ H1(0, `) : f(0) = f0, f(`) = f1},

X0 = {f ∈ H1(0, `) : f(0) = 0, f(`) = 0},

Y = {g ∈ H2(0, `) : g(0) = g0, g(`) = g1, g
′(0) = θ0, g

′(`) = θ1},

Y0 = {g ∈ H2(0, `) : g(0) = 0, g(`) = 0, g′(0) = 0, g′(`) = 0},

where {f0, f1}, and {g0, g1, θ0, θ1} are the prescribed boundary values. The minimization problem182

is thus:183

(f, g) = argmin
(f̂ ,ĝ)∈X×Y

ET̂ (f̂ , ĝ). (3.14)

Equivalently, above problem leads to the system of decoupled variational problems:

Find f ∈ X such that:

ˆ `

0

EA
df

dξ

dp

dξ
dξ = 0, ∀p ∈ X0, (3.15)

Find g ∈ Y such that:

ˆ `

0

EIζ
d2g

dξ2
d2q

dξ2
dξ = 0, ∀q ∈ Y0. (3.16)

These problems can be recast in strong form as:

d

dξ

(
EA

df

dξ

)
= 0, ∀ξ ∈ (0, `), with f(0) = f0, f(`) = f1, (3.17)

d2

dξ2

(
EIζ

d2g

dξ2

)
= 0, ∀ξ ∈ (0, `), with g(0) = g0,

dg

dξ
(0) = θ0, g(`) = g1,

dg

dξ
(`) = θ1. (3.18)

In the case where the parameters E, A, and Iζ remain constant along the truss, the analytical

solutions of these problems are simply given by:

f(ξ) = f0

(
1− ξ

`

)
+ f1

ξ

`
, (3.19a)

g(ξ) = θ0ξ

(
1− ξ

`

)2

− θ1
ξ2

`2
(`− ξ)− g0

(
1− ξ

`

)(
2
ξ2

`2
− 1

)
+ g1

ξ2

`2

(
3− 2

ξ

`

)
. (3.19b)

The axial forces at the nodes x̂0 and x̂1 are denoted by Fξ,0 and by Fξ,1 respectively, while the

tangential forces are denoted by Fη,0 and Fη,1 (see Figure 4). These four forces are given by:

Fξ,0 = −EAdf
dξ

(0) =
EA

`
(f0 − f1) , (3.20a)

Fξ,1 = EA
df

dξ
(`) = −EA

`
(f0 − f1) , (3.20b)

Fη,0 =
d

dξ

(
EIζ

d2g

dξ2

)
(0) = 6

EIζ
`3

(2g0 + `θ0 − 2g1 + `θ1) , (3.20c)

Fη,1 = − d

dξ

(
EIζ

d2g

dξ2

)
(`) = −6

EIζ
`3

(2g0 + `θ0 − 2g1 + `θ1) . (3.20d)

9



On the other hand, the moments Mζ,0 and Mζ,1 at the nodes x̂0 and x̂1 are computed as:

Mζ,0 = −EIζ
d2g

dξ2
(0) =

EIζ
`2

(6g0 − 6g1 + 4`θ0 + 2`θ1) , (3.21a)

Mζ,1 = EIζ
d2g

dξ2
(`) =

EIζ
`2

(6g0 − 6g1 + 2`θ0 + 4`θ1) . (3.21b)

The forces and moments have now been evaluated at the endpoints of the truss in terms of the input

parameters {f0, f1} and {g0, g1, θ0, θ1}, i.e. the displacements and angles of rotation at ξ = 0 and

ξ = `. Since the equations (3.20) and (3.21) are linear with respect to {f0, f1} and {g0, g1, θ0, θ1},
one can represent these equations in matrix form:

EA`−1 0 0 −EA`−1 0 0
0 12EIζ`

−3 6EIζ`
−2 0 −12EIζ`

−3 6EIζ`
−2

0 6EIζ`
−2 4EIζ`

−1 0 −6EIζ`
−2 2EIζ`

−1

−EA`−1 0 0 EA`−1 0 0
0 −12EIζ`

−3 −6EIζ`
−2 0 12EIζ`

−3 −6EIζ`
−2

0 6EIζ`
−2 2EIζ`

−1 0 −6EIζ`
−2 4EIζ`

−1


︸ ︷︷ ︸

K̂


f0
g0
θ0
f1
g1
θ1

 =


Fξ,0
Fη,0
Mζ,0

Fξ,1
Fη,1
Mζ,1

 .

(3.22)

Before assembling the global system, we first need to map the displacements and forces of the184

reference truss T̂ in the coordinate system (O, ξ, η, ζ) to the truss Tm in the coordinate system185

(O, x, y, z).186

3.2 Mapping from the reference truss to the trusses in the lattice187

A lattice L is composed of a set T of trusses of arbitrary length and orientation. For each truss Tm,188

these two information are entirely determined by the nodes xi and xj , as illustrated in Figure 5.189

For a bidimensional lattice, the orientation of truss Tm is defined in terms of angle αm, which190

is the angle between the x1-axis and the non-deformed neutral axis of truss Tm (Figure 5). The191

connectivityM is usually employed to relate and order the nodes xi and xj to a specific truss Tm.192

However, the connectivity M alone is not sufficient to relate the displacements and forces of

the reference truss T̂ to the truss Tm since they are not described in the same coordinate system.

The mapping for a bidimensional lattice between the local displacement and rotation {f0, g0, θ0} of

the reference node x̂0 to the displacement and rotation {ux,i, uy,i, φz,i} of the node xi in the global

coordinate system is given by cosαm sinαm 0
− sinαm cosαm 0

0 0 1

 ux,i
uy,i
φz,i

 =

 f0
g0
θ0

 (3.23)

The same orthogonal transformation is employed to map the forces and moments {Fξ,0, Fη,0,Mζ,0}
applied at the reference node x0 in the (O, ξ, η, ζ) coordinate system to the force and moments
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Figure 5: The reference truss T̂ in its local coordinate system (O, ξ, η, ζ) and the truss Tm in its
global coordinate system (O, x, y, z)

applied to the node xi of truss Tm in the (O, x, y, z) coordinate system. These forces and moments

are denoted {Fx,i,m, Fy,i,m,Mz,i,m}, where the indice m indicated that the forces and moments are

applied to the truss Tm. cosαm sinαm 0
− sinαm cosαm 0

0 0 1


︸ ︷︷ ︸

Rαm

 Fx,i,m
Fy,i,m
Mz,i,m

 =

 Fξ,0
Fη,0
Mζ,0

 (3.24)

The reference equilibrium equations that relates the displacements and forces in the global

coordinate system (O, x, y, z) can be written as

RTmK̂Rm

ux,i...
φz,j

 =

Fx,i,m...
Mz,j,m

 , where Rm =

[
Rαm 0

0 Rαm

]
(3.25)

The procedure for a truly three dimensional lattice is similar but is not shown here in order to193

keep the exposition simple.194

3.3 The global system of equations195

The displacement field that minimizes the energy (3.1) of lattice L under the previous hypotheses196

regarding the geometry and the Euler-Bernoulli model must assure/ensure the equilibrium of forces197

and moments in the entire lattice. To this end, we enforce the balance of forces and moments on198

the set P of all points of lattice L.199

We denote by Mi the connectivity of point xi (the index of the trusses connected to xi). We

now differentiate the cases of interior node, boundary nodes on which tractions and moments are

applied and boundary nodes subjected to Dirichlet boundary conditions. At each of the interior

points xi ∈ PI , no external forces or moments are applied, hence the first set of equilibrium relations
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are written as (for a two dimensional lattice):∑
m∈Mi

F1,i,m = 0, ∀xi ∈ PI , (3.26a)

∑
m∈Mi

F2,i,m = 0, ∀xi ∈ PI , (3.26b)

∑
m∈Mi

M3,i,m = 0, ∀xi ∈ PI . (3.26c)

The equilibrium of force and moments must also be enforced at the boundary nodes. We denote

by PD the set of points xi ∈ P \ PI where Dirichlet conditions are imposed (ux,i = uy,i = φz,i = 0,

∀xi ∈ PD). We also denote by PN the set of points xi ∈ P \ PI where Neumann conditions are

imposed. The second set of equilibrium relations are:∑
m∈Mi

Fx,i,m − Fx,i,ext = 0, ∀xi ∈ PN , (3.27a)

∑
m∈Mi

Fy,i,m − Fy,i,ext = 0, ∀xi ∈ PN , (3.27b)

∑
m∈Mi

Mz,i,m −Mz,i,ext = 0, ∀xi ∈ PN , (3.27c)

where Fx,i,ext, Fy,i,ext and Mz,i,ext represent the external forces and moments applied to the node xi.

The last set of equations are given by the Dirichlet conditions:

ux,i = 0, ∀xi ∈ PD, (3.28a)

uy,i = 0, ∀xi ∈ PD, (3.28b)

φz,i = 0, ∀xi ∈ PD. (3.28c)

We denote by U the vector containing the displacements and rotations of all points xi ∈ P .

We denote by U the set of admissible displacements of the set of points P . More precisely, the

set of displacements must satisfy the Dirichlet conditions (3.28) (U = {U ∈ R3NP |ux,i = uy,i =

φz,i = 0, ∀xi ∈ PD}). This definition can also be easily extended to three dimensional lattice. The

variables U and P are sometimes referred as the state and control variables respectively. We also

denote by F the vector containing the force and moments applied at all node xi ∈ P (the forces

and moments are null for all xi ∈ PI ∪ PD). The set of equilibrium equations (3.26), (3.27) and

Dirichlet conditions (3.28) can be conveniently recast in the global system of equations:

e(U,P ) := K(P )U − F = 0, (3.29)

where K is the resulting stiffness matrix. We also denote by D the set of admissible set of points P .200

More precisely, we want a set P of points that possess distinct points that lie in the closure of Ω201
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(D = {P | ∀xi, xj ∈ P, xi, xj ∈ Ω̄ and xi 6= xj for i 6= j}). The restriction that the nodes must202

be distinct is necessary to ensure that the equilibrium relation e and the strain energy E are well-203

defined. It is important to note that as long the set P of nodes belongs to D and that at least a204

Dirichlet condition is applied to one point (PD 6= ∅), the stiffness matrix K is invertible. Hence,205

for a given set P of points, the displacements U satisfying (3.29) is unique. The imposition of at206

least one Dirichlet condition can also be relate to constraint the motion of a lattice.207

Once the solution U is computed, the displacement field over the entire lattice is known through

the equations (3.19) and (3.23). The strain energy ETm of each truss Tm can therefore be obtained

through (3.13) as well as the total strain energy E of the lattice by computing

E(U,P ) =

NT∑
m=1

ETm(U,P ). (3.30)

We now analyze the properties of the system of equations e(U,P ) = 0. We will note the

partial directional derivative of e by ∂Ue(U,P )(δU) and by ∂P e(U,P )(δP ) along the directions δU

and δP respectively. Il faut vérifier que e est continuously Frechet differentiable pour

appliquer le theorème de la fonction implicite. Since the application e is continuously Frechet

differentiable on U × P and that ∂Ue(U,P ) is an invertible linear application, we can apply

the Implicit Function Theorem which state that there exist a unique continuous function

w : D → U
P 7→ w(P ) = U

(3.31)

such that e(U,P ) = e(w(P ), P ) = 0. Although we know that w exists, the analytic expression may

not be known. However, in our case, the function w is known and is given by w(P ) = K−1(P )F .

Also, the total strain energy E of a lattice L can be described solely with the variable P . For the

sake of clarity, we will note:

Ê(P ) := E(w(P ), P ) = E(K−1(P )F, P ). (3.32)

Again, for each P ∈ D, one can compute Ê(P ). We will note DÊ(P )(δP ) the total directional208

derivative of Ê evaluated at P in the direction δP . It is important to note that a dimensionless209

equilibrium relation e and strain energy Ê are computed in order to obtain well-scaled optimization210

problems that will be described in the next section.211

4 Formulations of the Shape Optimization Problems212

We present in this section two formulations of the shape optimization problem and introduce213

equilibrium and geometrical constraints that we shall consider. The reduced problem is employed214

in order to remove the state variable U from the optimization problems. Then, we present the215
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interior-point method that will be used for the solution of the finite-dimensional optimization216

problems. Finally, the adjoint problem is introduced in order to efficiently compute the derivative217

information.218

The common objective of the various formulations of the shape optimization problem is to219

seek the set P ∈ D of a lattice L such that its strain energy E is minimized. The first, and220

maybe the simplest, formulation of the shape optimization problem is the one where the boundary221

nodes Pi ∈ PΓk are constrained to remain on Γk. We describe each boundary Γk with a function222

γk ∈ C∞(Rd) such that γk(xi) = 0, ∀xi ∈ PΓk and γk(xi) 6= 0 everywhere else. The first shape223

optimization is formulated as follows224

Problem with Γ
constraint

min
U∈U,P∈D

E(U,P ),

s.t. e(U,P ) = 0,
γk(xi) = 0, ∀xi ∈ PΓk , k = 1, . . . , NΓ .

(4.1)

It is important to observe that the displacement field U ∈ U is also a variable of the optimiza-225

tion problem since the strain energy E depends on U . By using (4.1), a new formulation of the226

optimization problem, sometimes referred to as the reduced problem, can be formulated as follows227

Reduced problem with
Γ constraint

min
P∈D

Ê(P ),

s.t. γk(xi) = 0, ∀xi ∈ PΓk , k = 1, . . . , NΓ .
(4.2)

This reduced formulation only possess the set P of points as variables and the equilibrium rela-228

tion e(U,P ) is readily satisfy for each P ∈ D. For this work, only the reduced version of the229

optimization problems will be considered due to its computational cost, as it will be explained230

below.231

We can add a geometrical constraint to problem (4.2) to force the truss Tj to be arranged as232

near-equilateral elements through the constraint cκ (the impact of the choice of the lower bound ρ233

will be analyzed in Section 5).234

Reduced problem with
(Γ,K) constraint

min
P∈D

Ê(P )

s.t. γk(xi) = 0, ∀xi ∈ PΓk , k = 1, . . . , NΓ ,
ρ ≤ cκ(Ke) e = 1, . . . , NK

(4.3)

The elements Ke do not constitute separate variables of the shape optimization problem (4.3) since235

these elements are entirely defined by the set P of points. Since the set P is of finite dimension,236

the precedent shape optimization problems consist of finite dimensional optimization problems. We237

now present the methodology employed to solve these three shape optimization problems.238

4.1 Interior-Point Method239

To solve the different shape optimization problems, we employ the open-source solver IPOPT that240

implements an interior-point method. The choice of the solver IPOPT is motivated by the fact241
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that it can handle finite dimensional optimization problems with non-linear equality and inequality242

constraints as well as non-linear and non-convex objective functions. We briefly present here the243

implementation of the interior-point method in IPOPT. A more thorough description of this partic-244

ular solver is done in [22, 23] and an extensive presentation is available in [15, Chapter 19]. Without245

loss of generality, we introduce the interior-point method on the shape optimization problem (4.3).246

The method first introduces slack variables s ∈ RNK to produce the following problem:247

min
P∈D,s∈RNK

Ê(P ),

s.t. γk(xi) = 0, ∀xi ∈ PΓk , k = 1, . . . , NΓ ,
cκ(Ke)− ρ− se = 0 e = 1, . . . , NK ,
se ≥ 0 e = 1, . . . , NK .

(4.4)

For the sake of clarity, we will note cE(P ) the function containing all the constraints on the boundary248

nodes and cI(P ) the function containing all the constraint on the quality of the elements Ke. With249

a slight abuse of notation, s ≥ 0 represents a component-wise inequality. The problem (4.4) can be250

simplified as follows:251

min
P∈D,s∈RNK

Ê(P ),

cE(P ) = 0,
cI(P )− s = 0,
s ≥ 0.

(4.5)

Let λE be the Lagrange multiplier associated with the equality constraints (the constraints on the

points on the boundary) and λI the Lagrange multiplier associated with the inequality constraints

(the constraints on the quality of the elements Ke). We then introduce the Lagrangian functional

of problem (4.5):

L(P, λE, λI) = Ê(P )− λTE cE(P )− λTI cI(P ). (4.6)

We shall use the Karush-Kuhn-Tucker (KKT) conditions, which provide necessary first order con-

ditions that a local minimum must satisfy.

∇PL(P, λE, λI) = ∇P Ê(P )−∇P cET (P )λE −∇P cIT (P )λI = 0 (4.7a)

cE(P ) = 0 (4.7b)

cI(P )− s = 0 (4.7c)

SλI = 0 (4.7d)

s, λI ≥ 0 (4.7e)

As shown with the early results presented in Section 4, the objective function Ê can be non-252

convex, hence possessing multiple local minima. Since the interior-point method described here only253

seeks a solution that respects the KKT conditions, it can happen that a local minima rather than254
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a global minima be reached. The interior-point method consists in relaxing the complementarity255

condition (4.7d) with a positive parameter µ in order to circumvent the problem of presuming which256

inequality constraint is active or not. This parameter µ is decreased through the optimization pro-257

cedure in order to approach a solution satisfying (4.7). One can adopt essentially two methodologies258

to adapt this parameter, the Fiacco-McCormick strategy or an adaptive strategy. The interested259

reader can refer to [14] and [15, Chapter 19] for a detailed description of these approach.260

The relaxation of the complementarity conditions (4.7d) to (4.8d) can also be regarded as a way

to remove the inequality constraint on the slack variable s by adding a logarithmic barrier to the

objective function. The modified KKT conditions are then:

∇PL(P, λE, λI) = ∇P Ê(P )−∇P cET (P )λE −∇P cIT (P )λI = 0 (4.8a)

cE(P ) = 0 (4.8b)

cI(P )− s = 0 (4.8c)

SλI − µ = 0 (4.8d)

s, λI ≥ 0 (4.8e)

To find a solution P that satisfy (4.8) for a sufficiently small µ, the IPOPT solver employ a line

search approach. Starting with a initial approximation (P 0, s0, λ0E, λ
0
I ), a next iterate is computed

according to:

P k+1 = P k + αdP , (4.9a)

sk+1 = sk + αsds, (4.9b)

λk+1
E = λkE + αdE, (4.9c)

λk+1
I = λkI + αdI. (4.9d)

To compute the directions dP , dE, dI, and ds, the Newton method is applied to (4.8). The linear

system obtained is called the primal-dual system.
∇PPL(P k, sk, λkE, λ

k
I ) 0 −∇P cET (P k) −∇P cIT (P k)

0 ΛI 0 S
−∇P cE(P k) 0 0 0
−∇P cI(P k) −I 0 0



dP
ds
dE
dI

 =


∇PL(P k, sk, λkE, λ

k
I )

SλI − µ
cE(P k)

cI(P
k)− s


(4.10)

As mentioned in Section 4, working with the reduced shape optimization problem (4.2) and (4.3)261

allows for the reduction of the size of the linear system (4.10), hence decreasing the computational262

cost of calculating each iterate. Once the directions d are computed, the step length α and αs are263

calculated by means of filters. These filters check if the next iterate obtained reduce the264

objective function without increasing the constraint violation (‖cE(P k+1), cI(P
k+1)‖) and265

the other way around. A more complete description of these filters and on how the system (4.10)266

is solved are again presented in [15, 23].267
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4.2 Derivative Information and Adjoint Problem268

As shown previously, the interior-point method requires the information of the gradient of the

Lagrangian function L and its hessian. The latter is not computed exactly, but rather a Quasi-

Newton method, namely the BFGS approximation, is employed [15, Chapter 6]. To ensure the

convergence of the interior-point method, exact knowledge of the gradient of the Lagrangian L,

in particular the gradient of the objective function Ê , is however needed. The computation of the

total derivative of the objective function Ê can be done efficiently by employing the/an adjoint

problem. The forthcoming description follows essentially the one presented in the manuscript [10].

We first compute the total directional derivative DÊ(P )(δP ) by noting the duality pairing 〈·, ·〉:

〈DÊ(P ), δP 〉D∗,D = 〈DE(w(P ), P ), δP 〉D∗,D, (4.11a)

= 〈∂UE(w(P ), P ), Dw(P )(δP )〉U∗,U + 〈∂PE(w(P ), P ), δP 〉D∗,D, (4.11b)

= 〈Dw(P )∗∂UE(w(P ), P ), δP 〉D∗,D + 〈∂PE(w(P ), P ), δP 〉D∗,D. (4.11c)

Since the total derivative is needed and not only the directional derivative in the direction δP , we

can obtain from the previous equations:

DÊ(P ) = Dw(P )∗∂UE(w(P ), P ) + ∂PE(w(P ), P ). (4.12)

As mentioned in Section 3 the function w may not be known, hence the dual operator Dw(P )∗

can not be computed. We use again the Implicit Function Theorem to circumvent this problem.

Another result of the Implicit Function Theorem provides the needed information regarding the

derivative of w (Ajouter plus de détails?):

Dw(P ) = −∂Ue(w(P ), P )−1 ∂P e(w(P ), P ). (4.13)

The total derivative DÊ(P ) can then be computed this way:

DÊ(P ) = −∂P e(w(P ), P )∗ ∂Ue(w(P ), P )−∗ ∂UE(w(P ), P ) + ∂PE(w(P ), P ). (4.14)

The adjoint problem consist in solving the linear system ∂Ue(w(P ), P )∗q = −∂UE(w(P ), P ).

Once the quantity p is calculated, the total derivative is computed:

DÊ(P ) = −∂P e(w(P ), P )∗ q + ∂PE(w(P ), P ). (4.15)

Once the total derivative is known, the gradient ∇P Ê can readily be obtained. It is important to269

note that the use of the adjoint problem to acquire DÊ(P ) is advantageous compared to the use of270

finite differences. In fact, the adjoint method need only to solve one linear system, whereas the use271

of finite differences necessitate the resolution of the equilibrium relation e(U,P+δP ) = 0 for each δP272

chosen (a minimum of NP perturbation δP are necessary). Moreover, the derivative information273
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obtained via finite difference consist only in approximation while the precedent methodology gives274

the exact derivative information. Finally, the gradient on the equality constraints ∇P cE(P ) and on275

the inequality constraints ∇P cI(P ) are computed directly since they do not depend on U . Faut-il276

ajouter un schéma/algorithme montrant les interations entre le solveur IPOPT et le277

forward problem?278

5 Numerical Examples279

We present in this section various formulations of the shape optimization problem and we solve280

these problems on simple test cases. We analyze the performance of each formulation with respect281

to the functional objective and we identify geometrical inconsistencies in the solution. We also282

discuss theoretically the existence, and sometimes the non-existence, and uniqueness of solutions283

of the shape optimization problems.284

5.1 Existence of Solutions285

We consider for all numerical examples shown in this section that the dimensionless values of the286

radius of the trusses, their Young modulus E and the norm of the external forces (‖Fext‖) are equal287

to one.288

We first investigate the existence of solutions of the shape optimization problems (4.2) and (4.3)289

for the problem illustrated in Figure 6. The right side of this Figure 6 presents a lattice extracted290

from the geometry Ω1. We assume that the width and height of Ω1 possess the dimensionless value291

of 100. Hence, the dimensionless position of nodes x1 and x3 are (0, 0) and (100, 100) respectively.292

x4

x1

x3

x2

T3

T
2

T1

T
4

Fext

Fext

Fx,3,ext

Fx,2,ext

x5

T
8 T7

T5
T
6

Ω1 L1

Figure 6: Geometry Ω1 with its loadings (left) and a corresponding lattice L1 (right).

For the lattice illustrated in Figure 6, only the position of the node x5 is a control variable293

In order to assess whether there exists a solution or not, we analyze the level-set of the objective294

function and the feasible region for both shape optimization problems (4.2) and (4.3).295
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Figure 7: Level-set of the strain energy for the shape optimization problem (4.2) (left) and (4.3)
(right) on the first example. The feasible region for the problem (4.2) is the interior of the whole
square, while the feasible region for the problem (4.3), with a lower bound ρ = 0.5, is limited to
the inside curved box with the black boundary. Because both problems (4.2) and (4.3) possess the
same objective function (the strain energy), their level-set are identical.

We observe in Figure 7 that the strain energy of the lattice L1 is nonlinear (as mentioned in296

Section 3.3) with respect to the position of the node x5. Moreover, the objective functional is not297

convex and the optimal lattice structure is not symmetric although the loading is. The298

optimal lattice obtained for the shape optimization problems (4.2) and (4.3) are presented in Fig-299

ure 8. The dimensionless strain energy for each optimized lattice is/are presented in Table 1. The300

initial lattice is the one described in Figure 6. As expected, the strain energy of the lattice obtained301

with problem (4.2) is smaller than the strain energy of the lattice obtained with problem (4.3) since302

the feasible region of the latter is included in that of the former.303

Table 1: Comparison of the strain energy for lattice L1

Initial lattice
Optimized lattice

with problem (4.2)
Optimized lattice

with problem (4.3)
Strain energy 24.4733 22.9407 23.3621

We now verify on a second simple problem if the previous observations hold true. The second304

geometry and loadings to be studied are shown in Figure 9. The length of each side of the equilateral305

triangle has the dimensionless value of 100.306

For this second problem, the position of the node x4 constitutes the variable of the shape307

optimization problem. Once again, the level-set of the strain energy and the feasible region for308
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Figure 8: Optimized lattice with the problem (4.2) (left) and with the problem (4.3) (right) for the
first example.
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Figure 9: Geometry Ω2 with its loadings (left) and a corresponding lattice L2 (right).
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problems (4.2) and (4.3) are presented in Figure 10309
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Figure 10: Level-set of the strain energy for the shape optimization problem (4.2) (left) and (4.3)
(right) for the second example. The feasible region for the problem (4.2) is the interior of the whole
equilateral triangle. The feasible region for the problem (4.3) with ρ = 0.5 is the triangular-shaped
domain and its interior.

We observe in Figure 10 that there exist no minima for the shape optimization problem (4.2) in310

the feasible region. Indeed, the position of the node x4 that minimize the strain energy of lattice L2311

is exactly at the position of the node x2 (Figure 9). This particular position is not included in D,312

therefore the shape optimization (4.2) has no solution. On the other hand, the problem (4.3) is313

well-posed since the quality constraint on the elements makes the feasible set closed. As the level-set314

in Figure 10 shows, the minima is located in the top corner of the triangular shape.315

We present a third simple example to verify if the quality constraints cκ of problem (4.3) can316

lead to some geometrical inconsistencies. This third example is a slight variation of the previous317

one; the geometry and the loading, as well as the corresponding lattice, are presented in Figure 11.318

For this problem, we consider that the width and the height of the triangular shape is a dimen-319

sionless length of 100 and that the control variable is the position of the node P4. Once again, the320

level-set and the feasible regions are shown in Figure 12 for the shape optimization problem (4.2)321

and (4.3).322

Just as in the second example, the shape optimization problem (4.2) for the lattice L3 does not323

possess a minima since the feasible region for this problem is an open subset of R2. For the shape324

optimization problem (4.3), a solution does exist since the feasible region is a closed subset of R2
325

(the region described by the solid line). However, the region delimited by the dotted line is also a326

zone where the quality constraint ρ ≤ cκ(Ke), e = 1, . . . , 3 is respected. Since the constraint P ∈ D327
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Figure 11: Geometry Ω3 with its loadings (left) and a corresponding lattice L3 (right).
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Figure 12: Level-set of the strain energy for the shape optimization problem (4.2) (left) and (4.3)
(right) on the third example. The feasible region for the problem (4.2) is the interior of the whole
isosceles triangle. The feasible region for the problem (4.3) with ρ = 0.3 is the triangular-shaped
delimited by the solid line and its interior. The two regions delimited by the dotted lines are zones
where the constraint ρ ≤ cκ(Ke), e = 1, . . . , 3 is also respected.
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is not explicitly enforced and that the method employed to solve the optimization problem uses a328

line-search technique, it is possible to find a minima that is outside of the prescribed domain Ω3.329

When this particular case occurs, one or multiples elements Ke of the lattice happen to be flipped.330

Not only this phenomena may cause the nodes to move outside of the feasible region, but it can331

also produce crossing of trusses where there is no nodes. The right lattice of Figure 13 presents an332

optimal lattice that respect P ∈ D while the left lattice present a lattice with node x4 outside of333

the feasible region, hence P /∈ D.334
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Figure 13: Non-acceptable optimal lattice (left) since the node x4 does not lies in Ω̄. Acceptable
optimal lattice for the third example (right) where the node x4 is in Ω̄.

In order to prevent the shape optimization problem (4.3) to compute a lattice that does not335

respect the constraint P ∈ D or possess crossing of trusses, we penalize the constraint on the quality336

of the element cκ where a particular element is flipped. By enforcing simultaneously the constraint γ337

on the boundary and the constraint cκ on the quality of the element, the constraint P ∈ D is implicit338

respected.339

As demonstrated with the simple examples 2 and 3, the shape optimization problem (4.2) does340

not always possess a minima. This is caused, as mentioned earlier, by the fact that the feasible341

region (D for this shape optimization problem) is not closed. One can argue that instead of finding342

the position of the set P of nodes in the set of set distinct nodes D, the position of the nodes343

can be find in D̄. However, this closed subset will allow the nodes to be stacked, which will lead344

to a degenerated physical model of the lattice, because some trusses will possess a null length.345

Moreover, the nodes can be placed on the boundary ∂Ω, hence resulting in the superposition of346

several trusses. Due to these observations, the shape optimization problem (4.2) will no longer be347

considered. For now on, only the shape optimization problem (4.3) will be employed since imposing348

simultaneously the boundary constraints and the quality constraints (along with the orientation of349

the elements) prevent any degeneracy of the physical model of lattice and also prevent geometrical350

inconsistency. Mentionner toutefois que cela ne gatrantie pas nécessairement l’existence351
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d’une solution, mais que ce problème semble toujours en posséder une.352

5.2 Efficiency of the shape optimization problem (4.3)353

We first check the efficiency of the shape optimization problem (4.2) by analyzing the reduction of354

the total and local strain energy. We consider the fourth simple example presented in Figure 14.355

Ω4

Fext

L4

Fext

Figure 14: Geometry Ω4 and loading of the fourth simple example (left) and the corresponding
lattice L4. For the sake of clarity, the nodes and the trusses are not labeled.

The width and the height of the L-shaped geometry are set to 200. The lower bound ρ on356

the quality of the elements is fixed to 0.5. The impact of this particular choice of lower bound ρ357

will be examined later. There is 450 control variables (225 nodes) for this example. The shape358

optimization problem (4.3) is applied to the lattice L4 in order to obtain the set P of position359

of points such that the strain energy of the entire lattice attained a local minima. The optimal360

geometry is displayed in Figure 15 (right).361

Multiples remarks can be made regarding the results presented in Figure 15. First, we observe362

that the optimal lattice L4,opt indeed possess a strain energy that is significantly reduce compared363

to the initial lattice L4 (a diminution of approximately 50%). Second, the shape optimization364

problem (4.3) had transformed the structured lattice L4 into a lattice that is clearly not structured.365

In fact, the trusses and nodes tend to be arranged in a sort of arch while some others tend to be366

concentrated at the corner of the L-shaped structure. Finally, we note that the maximum strain367

energy that a truss possess is also significantly reduce between the initial and the optimized lattice.368

As mentioned previously, the lower bound ρ of the quality of the elements was arbitrary fixed to369

0.5. We now investigate the impact of this lower bound ρ on the shape optimization problem (4.3)370

and hence the optimal lattice obtained. We consider the same example and lattice L4 presented at371

Figure 14 with the same height and width of 200.372

We observe in Figure 16 that the optimized lattices obtained with small lower bound ρ on the373

quality of the element possess nearly degenerated elements. On the other hand, the optimized374

lattice obtained with a greater lower bound tend to produce geometry whose element are nearly375
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Figure 15: Initial lattice L4 (left) and optimized lattice L4,opt (right). The local strain energy of
each truss are indicated with the colorbar.

equilateral. The analysis of the strain energy of each optimized lattice show, as expected, that a376

larger lower bound ρ on the quality of the elements restrict significantly the feasible region of the377

shape optimization problem (4.3). For small lower bound, a minima for the shape optimization378

problem (4.3) can thus be seek in a wider feasible region. This explains the fact that the objective379

function (the strain energy Ê) is smaller for lower bounds ρ → 0. We also remark as mentioned380

previously, that the nodes xi (and then the trusses Tm) of the optimized lattices move in order to381

create an arch. Discuter du pourquoi ne pas toujours prendre un petit ρ.382

For all the previous example, the lattice L1 to L4 where somewhat arbitrary extracted from383

the geometries Ω1 to Ω4. We now look into this process of creating an initial lattice from a384

geometry and assess whether or not it impacts the optimized lattice obtained. We consider again385

the geometry Ω4 and we extract 2 different lattices L′4 and L′′4 possessing approximately the same386

number of nodes xi (225 and 224 respectively) but with a different connectivity for their trusses.387

These two new lattices are presented in Figure 17.388

We apply the shape optimization problem (4.3) on the lattices L′4 and L′′4 to obtain the optimal389

lattices displayed in Figure 18 (the lower bound ρ on the quality of the elements Ke is set to 0.6).390

The same geometrical pattern of an arch can be observed in the optimal lattices displayed in391

Figure 18. While the overall appearance of these optimized structure remain the same, we can392

observe small variation in the strain energy. Since the connectivity of the lattice L4, L′4 and L′′4393

is/are different, the number of trusses Tm are also different for each lattice. We therefore analyze,394

for a fixed value of the lower bound ρ, the influence of the volume (see Definition 1) of the optimized395

lattices L4,opt, L
′
4,opt and L′′4,opt on their strain energy.396
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Figure 16: Optimized lattices L4,opt for the fourth example with various lower bound ρ on the
quality of the elements.
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Total Energy: 77.0613 Total Energy: 78.5282

Figure 17: Alternative initial lattices L′4 (left) and L′′4 (right) for the geometry Ω4.

Total Energy: 40.9253
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Figure 18: Optimized lattices L′4,opt (left) and L′′4,opt (right) with their respective total and local
strain energy.

Table 2: Volume and strain energy for the optimized lattices L4,opt, L
′
4,opt and L′′4,opt

Lattice L4,opt Lattice L′4,opt Lattice L′′4,opt
Volume 27 989 27 603 27 726

Strain energy 44.0924 40.9253 41.5327
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We observe in Table 2 that, for similar value of volume, there is some variation in the strain397

energy of the optimized lattices. Also, the results presented in Table 2 indicate that the initial398

structured lattices (L4 and L′4) do not necessarily produce the best optimized lattice. All these399

observations suggest that the initial lattice, especially the connectivity M of its points xi, impact400

the quality of the optimized lattice computed by solving the shape optimization problem (4.3).401

However, finding a priori an optimal connectivity M of the points xi is an intractable problem,402

especially for lattice possessing à large number of points.403

6 Conclusion404

We have presented a new methodology aimed for the shape optimization of lattice produced by405

additive manufacturing technologies. A geometrical description of a lattice based on a polyhedral406

conforming meshing of a domain Ω is made. A general framework describes the mechanic of a407

lattice, then hypothesis are posed to model each trusses as Euler-Bernoulli beams. Two shape408

optimization problems exploit the consistent geometrical and physical description in order to seek409

the position of the nodes (and the trusses) that minimizes the strain energy of a lattice. These two410

optimization problems are solved using an interior-point method and the derivative information are411

computed with the help of the adjoint method.412

Simple numerical results demonstrate that the shape optimization problem (4.2) (without the413

constraints on the quality of the elements) does not always possess a solution. This result is mainly414

due to the fact that its feasible region is not closed. On the other hand, the shape optimization415

problem (4.3) (with the constraints on the quality of the elements) does non lead to the degeneracy416

of the physical model nor to geometrical aberrations. This shape optimization problem is then417

applied to an L-shaped lattice where it is shown that the proposed method allows a significant418

reduction of the strain energy. The impact of the lower bound ρ on the quality of the elements is419

also analyzed. Finally, the results demonstrate that a structured lattice, while geometrically simple420

to describe, is not necessarily an optimal lattice with respect to minimizing the strain energy.421

As suggested by the last numerical results, the connectivity of the trusses affects the objective422

function of the optimized lattice. A forthcoming paper will investigate an adaptive procedure423

to gradually construct an optimized lattice from a coarse initial lattice, hence circumventing the424

problem of determining the connectivity of the trusses. We anticipate that the optimized lattices425

obtained with this adaptive method present advantageous properties compared to optimized lattice426

without the adaptive process.427

Extension of the proposed method can be made to take into account the uncertainties in the428

loadings and in the manufacturing process. Also, an hierarchy of physical model with increasing429

complexity can be constructed within the same framework presented in Section 3 and validated.430

The proposed shape optimization problem (4.3) can be extended with additional design parameters431
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such as the radius of the trusses Tm and other quality measures of the elements can be tested.432
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